resistics.regression.compute module

resistics.regression.compute.evalFrequencyData(freq, evalFreq, winDataMatrix)[source]

Calculate spectral power data at evaluation frequencies

Parameters
freqnp.ndarray

Frequency array of spectra data

evalFreqnp.ndarray

Evaluation frequencies for the decimation level

winDataMatrixnp.ndarray

Array holding spectral power data at frequencies freq

Returns
outnp.ndarray

Spectral power data interpolated to evaluation frequencies

resistics.regression.compute.remoteMatrices(ncores: int, inData: List[resistics.spectra.data.SpectrumData], outData: List[resistics.spectra.data.SpectrumData], remoteData: List[resistics.spectra.data.SpectrumData], inChannels: List[str], outChannels: List[str], remoteChannels: List[str], smoothLen: int, smoothWin: str, evalFreq: numpy.ndarray)[source]

Parallel calculation of spectral matrices for remote reference data

Parameters
ncoresint

The number of cores to run on

inDataList[SpectrumData]

The input spectrum data

outDataList[SpectrumData]

The output spectrum data

remoteDataList[SpectrumData]

The remote reference spectrum data

inChannelsList[str]

The input channels to use

outChannelsList[str]

The output channels to use

remoteChannelsList[str]

The remote channels to use

smoothLenint

The smoothing length

smoothWinstr

The smoothing window

evalFreqnp.ndarray

The evaluation frequencies to interpolate to

Returns
outList[np.ndarray]

List of spectral matrices

resistics.regression.compute.remoteMatricesWindow(inData: resistics.spectra.data.SpectrumData, outData: resistics.spectra.data.SpectrumData, remoteData: resistics.spectra.data.SpectrumData, inChannels: List[str], outChannels: List[str], remoteChannels: List[str], smoothLen: int, smoothWin: str, evalFreq: List[float])[source]

Compute the spectral matrices

Parameters
inDataSpectrumData

The input spectrum data

outDataSpectrumData

The output spectrum data

remoteDataSpectrumData

The remote spectrum data

inChannelsList[str]

The input channels to use

outChannelsList[str]

The output channels to use

remoteChannelsList[str]

The remote channels to use

smoothLenint

The smoothing length

smoothWinstr

The smoothing window

evalFreqnp.ndarray

The evaluation frequencies to interpolate to

Returns
outnp.ndarray

Cross spectral matrices interpolated to evaluation frequencies

resistics.regression.compute.spectralMatrices(ncores: int, inData: List[resistics.spectra.data.SpectrumData], outData: List[resistics.spectra.data.SpectrumData], inChannels: List[str], outChannels: List[str], smoothLen: int, smoothWin: str, evalFreq: numpy.ndarray)[source]

Parallel calculation of spectral matrices

Parameters
ncoresint

The number of cores to run on

inDataList[SpectrumData]

The input spectrum data

outDataList[SpectrumData]

The output spectrum data

inChannelsList[str]

The input channels to use

outChannelsList[str]

The output channels to use

smoothLenint

The smoothing length

smoothWinstr

The smoothing window

evalFreqnp.ndarray

The evaluation frequencies to interpolate to

Returns
outList[np.ndarray]

List of spectral matrices

resistics.regression.compute.spectralMatricesWindow(inData: resistics.spectra.data.SpectrumData, outData: resistics.spectra.data.SpectrumData, inChannels: List[str], outChannels: List[str], smoothLen: int, smoothWin: str, evalFreq: List[float])[source]

Compute the spectral matrices

Parameters
inDataSpectrumData

The input spectrum data

outDataSpectrumData

The output spectrum data

inChannelsList[str]

The input channels to use

outChannelsList[str]

The output channels to use

smoothLenint

The smoothing length

smoothWinstr

The smoothing window

evalFreqnp.ndarray

The evaluation frequencies to interpolate to

Returns
outnp.ndarray

Cross spectral matrices interpolated to evaluation frequencies