Source code for resistics.mask.io

import os
import numpy as np
import math
from datetime import datetime, timedelta
from typing import List, Tuple

from resistics.common.base import ResisticsBase
from resistics.common.io import checkAndMakeDir, fileFormatSampleFreq
from resistics.common.print import listToString
from resistics.mask.data import MaskData


[docs]class MaskIO(ResisticsBase): """Class for reading and writing maskData Masks are referenced to sampling frequencies rather than particular measurements. The idea if that masks are calculated out for all the data and later, the data can be constrained either using date and time constraints or by using window masks based on statistics. Mask files are located in: project -> maskData -> site -> sample frequency -> specdir Attributes ---------- datapath : str Path to mask file directory Methods ------- __init__(datapath) Initialise the MaskIO object. read(maskName, sampleFreq) Read in maskName for sampleFreq from datapath write(maskData) Write out maskData object to datapath. getFileNames(makeName, sampleFreq) The filename for a maskFile given a maskName and sampling frequency printList() Class status returned as list of strings """ def __init__(self, datapath: str = "") -> None: """Initialise Parameters ---------- datapath : str, optional Path to mask file directory """ self.datapath: str = datapath
[docs] def read(self, maskName: str, sampleFreq: float) -> MaskData: """Read in maskData from a file defined by maskName and sampleFreq Parameters ---------- maskName : MaskData MaskData object sampleFreq : float The sampling frequency of the data Returns ------- maskData : MaskData The MaskData object """ # read the window file infoName, winName = self.getFileNames(maskName, sampleFreq) infoFile = open(infoName, "r") lines = infoFile.readlines() infoFile.close() # this is all passed into the constructor sampleFreq = float(lines[0].strip()) numLevels = int(lines[1].strip()) evalFreq = [] for iL in range(0, numLevels): evalFreq.append( list(np.fromstring(lines[2 + iL].strip(), dtype=float, sep=",")) ) # read in the stats stats = lines[2 + numLevels].strip().split(",") for idx, _ in enumerate(stats): stats[idx] = stats[idx].strip() # now create a MaskData object maskData = MaskData(sampleFreq, numLevels, evalFreq, name=maskName, stats=stats) lines = lines[3 + numLevels :] # now read in the statistics evalFreqSorted = sorted(list(maskData.constraints.keys())) eIdx = -1 for l in lines: if "Frequency" in l: eIdx = eIdx + 1 elif "Statistic" in l: stat = l.strip().split("=")[1] stat = stat.strip() else: split = ( l.strip().split() ) # component is 0, min is 1, max is 2, inout is 3 maskData.constraints[evalFreqSorted[eIdx]][stat][split[0]] = [ float(split[1]), float(split[2]), ] inOut = False if split[3] == "True": inOut = True maskData.insideOut[evalFreqSorted[eIdx]][stat][split[0]] = inOut # now read the window mask file winMaskArray = np.load(winName + ".npy") for eIdx, eFreq in enumerate(evalFreqSorted): maskData.maskWindows[eFreq] = set(winMaskArray[eIdx]) # remove -1 from the set maskData.maskWindows[eFreq] = maskData.maskWindows[eFreq] - set([-1]) # now want to return as MaskData object return maskData
[docs] def write(self, maskData: MaskData) -> None: """Write the maskData out to datapath Mask data is saved as a numpy binary object Parameters ---------- maskData : MaskData MaskData object """ infoName, winName = self.getFileNames(maskData.maskName, maskData.sampleFreq) infoFile = open(infoName, "w") # first write out constraints infoFile.write("{:.9f}\n".format(maskData.sampleFreq)) infoFile.write("{}\n".format(maskData.numLevels)) for iL in range(0, maskData.numLevels): infoFile.write("{}\n".format(listToString(maskData.evalFreq[iL]))) infoFile.write("{}\n".format(", ".join(maskData.stats))) # now write out the data file # first get a sorted list of all the evaluations frequencies to loop through evalFreq = sorted(list(maskData.constraints.keys())) for eFreq in evalFreq: infoFile.write("Frequency = {:.9f}\n".format(eFreq)) for stat in maskData.stats: infoFile.write("Statistic = {}\n".format(stat)) for component in maskData.constraints[eFreq][stat]: minVal = maskData.constraints[eFreq][stat][component][0] maxVal = maskData.constraints[eFreq][stat][component][1] infoFile.write( "{}\t{}\t{}\t{}\n".format( component, minVal, maxVal, maskData.insideOut[eFreq][stat][component], ) ) # then loop through each infoFile.close() maskSize = 0 for eFreq in evalFreq: if len(maskData.maskWindows[eFreq]) > maskSize: maskSize = len(maskData.maskWindows[eFreq]) # create window mask array and initalise to -1 winMaskArray = np.ones(shape=(len(evalFreq), maskSize), dtype=int) * -1 # now fill the array for eIdx, eFreq in enumerate(evalFreq): lst = list(maskData.maskWindows[eFreq]) winMaskArray[eIdx, 0 : len(lst)] = lst np.save(winName, winMaskArray)
[docs] def getFileNames(self, maskName: str, sampleFreq: float) -> Tuple[str, str]: """Get the name of a mask file This method is here to give consistent file names for mask files. Parameters ---------- maskName : str The name of the mask sampleFreq : float The sampling frequency of the data Returns ------- infoFile : str The name of the mask infoFile winFile : str The name of the mask winFile """ checkAndMakeDir(self.datapath) sampleFreqStr = fileFormatSampleFreq(sampleFreq) name: str = maskName + "_{}".format(sampleFreqStr) infoFile: str = os.path.join(self.datapath, name + ".info") winFile: str = os.path.join( self.datapath, name ) # no need for extension here, numpy adds one return infoFile, winFile
[docs] def printList(self) -> List[str]: """Class information as a list of strings Returns ------- out : List[str] List of strings with information """ textLst = [] if self.datapath == "": textLst.append( "No datapath given. Please set the datapath attribute of the class" ) else: textLst.append("Datapath = {}".format(self.datapath)) return textLst